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Abstract 
Cracks are the initial indicators of the 

deterioration of any civil infrastructure. Structures 
are typically monitored manually by inspectors, 
which is time-consuming, laborious, costly, and easily 
prone to human error. To address these limitations 
this paper aims to present a vision transformer-based 
stone floor tiles crack detection and localization 
approach. The proposed model is trained on a custom 
dataset acquired from various stone tiles under 
various illumination conditions in the United Arab 
Emirates. The dataset consists of 5800 images having 
a resolution of 224×224 pixels. To assess the 
effectiveness of the proposed model, various 
evaluation metrics such as testing accuracy, precision, 
recall, F1 score, and computational time are 
employed to analyze its performance. The input patch 
size of the Vision Transformer (ViT) model is varied 
to investigate its effect on the performance of the 
model. The experimental results show that input 
patch size has a significant on the performance of the 
models. The ViT model trained on the lowest patch 
size of 14×14 pixels achieved the highest testing 
accuracy, precision, recall, and F1 score of 0.8612, 
0.8840, 0.8304, and 0.8564 respectively. The inference 
time of the ViT model for a single patch is 0.092 sec. 
The crack localization is performed by combining the 
proposed trained ViT model with the sliding window 
approach. The model performed well in detecting and 
locating cracks in stone floor tiles, indicating its 
potential for practical use. 
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1 Introduction 
In structural health monitoring, it is important to 

detect and monitor surface cracks early for long-term 
maintenance and failure prediction. The structure's 
condition information can be collected manually by 
subjective human experts by visually inspecting and 
evaluating the structure or automatically by using various 
vision-based approaches. Manual Inspection techniques 
are laborious, time-consuming, inspector dependent, and 
easily vulnerable to the perspicacity of the inspector. In 
addition, numerous studies have demonstrated the 
inherent variability and inconsistency of visual 
inspection results [1], [2]. Inadequate inspection and 
condition assessment can result in various accidents, such 
as the Minneapolis Interstate 35W Bridge Collapse, 
which resulted in 13 fatalities and 145 injuries [3]. 
Another example is the November 28, 1999, incident 
involving a freight train in Japan's Rebunhama Tunnel, 
which occurred because shear cracks in the structure 
were not correctly detected [4]. Automatic inspection 
techniques provide an efficient solution by reducing 
subjectivity and providing a substitute for the human eye 
to circumvent the issues associated with manual 
inspection. The automatic vision-based crack detection 
approaches can be divided into traditional image 
processing, Machine Learning (ML), and Deep Learning 
(DL)-based approaches. The conventional image 
processing approaches include various edge detection [5], 
thresholding [6], and filtering approaches [7]–[10]  
however these approaches cannot show resilience to 
image illumination and require manual human efforts. 
Machine learning approaches have the capability to 
overcome the limitation associated with conventional 
crack detection approaches. Machine learning 
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approaches consist of feature extraction i.e., extracting 
useful features [11]–[13] from images, and classification 
i.e., classifying the feature into crack and non-cracks
using classifiers [14]–[16]. The limitation of the machine
learning approaches is the manual selection of feature
extraction techniques which is not only challenging but
sometimes the extracted features did not represent the
actual cracks. These limitations can be addressed by
using DL algorithms that are capable of automatic feature
extraction and classification. DL algorithms are
particularly effective in detecting features in images
because they can automatically learn the feature
representations from the data itself. Various works [17]–
[21] have been presented in the literature using various
DL based Convolutional Neural Network (CNN) models
for crack detection in civil structures. However, these
approaches suffer from localized receptive field
problems in which the feature are not extracted in a
global context. Vision transformers are a relatively new
type of neural network that have shown promising results
in image classification tasks, including crack detection.
Several research studies have proposed using vision
transformers to overcome the limitations of traditional
methods in detecting and segmenting cracks [22]–[24].
Vision transformers are particularly effective due to their
ability to capture long-range dependencies in images
using self-attention mechanisms [25]. Therefore, this
paper aims to present a vision transformer-based crack
detection in stone floor tiles. The contribution of the
proposed work is as follows:

1. A custom dataset of 5800 stone floor tiles with
crack and non-crack images having a resolution of 
224*224 is created. 

2. A first ViT-based framework is proposed for
crack detection in stone floor tiles. 

3. The performance of the proposed ViT is
compared based on various input patch sizes to select an 
optimum input patch size. 

Figure 1. Overview of the proposed system 

4. Based on the results, a detailed discussion is
conducted to provide a reference to a researcher working 
in the same field.  

The remainder of the paper is organized as follows. 
Section 2 explains the system overview. The 
experimental results are discussed in section 3 followed 
by a discussion and conclusion in the last section. 

2 System Overview 
The proposed ViT-based stone floor tile crack 
detection system is composed of three main phases, 
as shown in Figure 1. A dataset is constructed in the 
first phase, which is subsequently provided to ViT 
transformer for training. The final section phase of the 
proposed method involves testing the system after 
training and performing crack localization using a 
sliding window approach. 

2.1 Dataset Creation 
In the proposed work, the data is collected from a 

variety of stone floor tiles used in the United Arab 
Emirates. A mobile phone camera with a resolution of 
4000x3000 pixels is used for the acquisition of images. 
The acquired images are divided into small patches of 224 
x 224 pixels. In order to separate the acquired data into 
cracks and non-cracks, manual labeling is performed. A 
total of 5800 patches are distributed 50/50 between cracks 
and non-cracks. Figure 2 below shows sample images of 
the acquired dataset and patches. A data split of 60:20:20 
is kept between the patches for training, validation, and 
testing of the proposed ViT model. The 60:20:20 split 
provides a balance between using enough data to train the 
model effectively, tune the hyperparameters of the model, 
while also ensuring that the model's performance is 
reliable on new data.  



Figure 2. Sample of the acquired image and input 
patches (Crack and Non-Crack) 

2.2 Training of the ViT Model 

The data created in the previous phase is given to the ViT 
model for training purposes. The vision transformer 
model is first developed by [26] and can overcome the 
shortcoming of the DL approaches by considering the 
input images as a series of patches. The schematic 
diagram of the vision transformer is shown in Figure 03. 
ViT architecture consists of an embedding layer, an 
encoder, and a final head classifier. The embedding 
layers divide an image X from the training set into 
patches without overlap where each patch is considered 
a unique token. In the encoder part of the vision 
transformer, multi-head self-attention (MHSA) is used to 
extract and integrates information globally across 
multiple regions of the images whereas traditional CNN 
uses filters with a local receptive field. This acquired  

Figure 3. Schematic diagram of vision transformer. 

information is encoded and fed into a multilayer 
perceptron classifier for classification purposes. 
Interested readers are referred to [26] for more 
information about the working of the vision transformer. 
In the proposed work, the ViT model is trained on various 
patch sizes i.e., 14*14, 21*21, 28*28, and 56*56 to 
evaluate its effect on the crack detection performance of 
the ViT model. The hyperparameters are tuned based on 
trial and error basis. During the hyperparameters tuning 
stage of the model the learning rate, transformer layers, 
batch size, and the number of epochs is set to 0.001, 16, 
16, and 40 respectively. 

2.3 Testing of ViT classifier 
    The trained ViT classifier is tested with a new set of 
data that is not used in the training and validation phase 
of the model. The trained ViT model is also integrated 
with the sliding window approach to localize the crack 
region in the images. In the sliding window approach, a 
window size of 224*224 equal to the input patch size is 
considered. The single window patch is given to the 
trained ViT model to identify the crack and non-crack 
patches. The sliding window moves over 224 pixels 
horizontally and vertically until the whole image is 
covered. A red bounding box is drawn around the patch 
classified as a crack by the ViT model as depicted in 
Figure 4. Interested readers are referred to [27] for more 
information about the working of the sliding window 
approach. 



Figure 4. Representation of sliding window approach. 

2.4 Evaluation Metrics 
To evaluate the performance of the proposed crack 
detection model, several standard evaluation metrics, 
including accuracy, precision, recall, and F1 score 
(depicted in Equation 1, 2, 3, and 4 respectively) are used. 
Accuracy measures the proportion of correctly classified 
samples (both cracked and non-cracked) among all 
samples in the dataset. 

Accuracy = (TP + TN) / (TP + TN + FP + 
FN) 

(1) 

Where TP, TN, FP, and FN represent the true positives, 
true negatives, false positives, and false negatives 
respectively. Precision measures the proportion of 
correctly classified cracked samples among all samples 
classified as cracked. 

Precision = TP / (TP + FP) (2) 

Recall measures the proportion of correctly classified 
cracked samples among all true positive samples in the 
dataset. 

Recall = TP / (TP + FN) (3) 

F1 score is the harmonic mean of precision and recall, 
and is often used to balance the trade-off between the two 
metrics. 

F1 score = 2 * ((Precision * Recall) / 
(Precision + Recall)) 

(4) 

3 Experimental Results 
The proposed ViT model is trained on Alienware 

Arura R8 core i9-9900k desktop system, CPU @3.60 

GHz with 32 GB RAM and an NVIDIA GeForce RTX 
2080 GPU. The performance of the model is evaluated 
on evaluation metrics i.e., ViT patch size, testing 
accuracy, precision, recall, and F1 score. The patch size 
of the ViT model is varied from smaller (14*14) pixels 
to larger (56*56) pixels to study its effect on the 
performance of the model.  The number of epochs for 
training the model is considered 40 as there is no further 
increase in the accuracy and a decrease in the model loss 
after the 40th epoch. As shown in Table 1, the 
performance metrics of the ViT model are compatible 
and an accuracy of more than 80% is achieved for all 
patch sizes. 

Table 1. Overall Results of the ViT model on various 
patch sizes 

Patch 
Size 

Testing 
Accuracy 

Recall Precision F1 
Score 

14*14 0.8612 0.8840 0.8304 0.8564 

21*21 0.8474 0.8613 0.8270 0.8438 

28*28   0.8414 0.8518 0.8253 0.8383 

56*56 0.8103 0.7896 0.8443 0.8161 

Additionally, as shown in Figures 5, 6, 7, and 8, the 
training and validation curves (accuracy and loss) show 
slight divergence, which implies that the model has not 
been overfitted. Keeping the transformer patch size of 
14*14, the ViT model achieved the highest testing 
accuracy, precision, recall, and F1 score of 0.8612, 
0.8840, 0.8404, and 0.8564 respectively. Increasing the 
patch size to 21*21 pixels, the accuracy, precision, recall, 
and F1 scores decreased by 1.38, 2.27, 0.34, and 1.26% 
respectively. Further increasing the patch size to 28*28 
pixels an accuracy of 0.8414, precision of 0.8518, recall 
of 0.8253, and F1 score of 0.8383 respectively. The 
lowest testing accuracy, precision, recall, and F1 score of 
0.8103, 0.7896, 0.8443, and 0.8161 is recorded by the 
ViT model using the patch size of 52*52. The proposed 
model trained on a small patch size of 14×14 outperforms 
all the others in terms of all evaluation metrics. The 
confusion metrics of the model based on various patch 
size and number of parameters is depicted in Table 2. 

The ViT model is then integrated with the sliding 
window approach for crack localization purposes in stone 
floor tiles. Testing images having a resolution of 
1120*2240 acquired in various lightning conditions are 
taken. Using the sliding window approach, the test image 
is divided into 50 equal patches of size 224*224. Each 
patch is given to the trained ViT model to decide whether 



it belongs to the crack class or not. The patch classified 
as a crack is represented by a red bounding box as shown 
in Figure 9. The whole image and single patch inference 
time of the ViT model are recorded to be 4.624 sec and 
0.092 sec respectively. The black boxes in  Figure 9 
represent the False Positives. The False negative patches 
did not exist as the system has the capability to correctly 
identified the crack region however the greater number 
of FP is due to the similarity of the grout lines to crack 
regions. The number of FP can be decreased by 
increasing the number of training data.  

Table 2.Patch size Vs No of parameters and 
Performance 

PS NOP 
(Millions) 

Confusion Matrices 

14*14 36.51 
Class Crk N-Crk
Crk 480 98 

N-Crk 63 519 

21*21 16.10 
Class Crk N-Crk
Crk 478 100 

N-Crk 77 505 

28*28 11.44 
Class Crk N-Crk
Crk 477 101 

N-Crk 83 499 

56*56 5.71 
Class Crk N-Crk
Crk 480 90 

N-Crk 130 452 
*PS: Patch Size, *NOP: Number of parameters, *Crk:

Crack, *N-Crk: Non-Crack 

Figure 5. Training and validation (a) loss (b) Accuracy 
graphs of ViT model (14*14) 

Figure 6. Training and validation (a) loss (b) Accuracy 
graphs of ViT model (21*21 

Figure 7. Training and validation (a) loss (b) Accuracy 
graphs of ViT model (28*28) 

Figure 9. Crack localization and scanning for FP and FN using the sliding window approach. 



Figure 8. Training and validation (a) loss (b) Accuracy 
graphs of ViT model (56*56) 

4 Discussion and Conclusion

This paper proposed a ViT-based framework for crack 
detection and localization in stone floor tiles. The 
performance of the proposed ViT model is compared to 
various input patch sizes. The experimental results 
showed that input patch size has a significant effect on the 
crack detection performance of the models. The model 
showed high crack detection performance on the lowest 
patch size. The performance of the model degraded as the 
patch size increased.  It is also noted that decreasing the 
input patch increases the number of parameters of the ViT 
model which leads to an increase in the computational 
time and complexity of the model. The result of the crack 
localization in Figure 09 shows no FN and a small number 
of FP which shows that the model has the capability to 
localize the crack efficiently. 

From the above discussion, it can be concluded that 
the ViT transformer integrated with the sliding window 
approach can be used to perform crack detection and 
localization in stone floor tiles. The ViT's ability to 
acquire global-scale features from the input image makes 
the task of crack detection. It can also be concluded that 
ViT transformers can be used for crack detection in 
various civil infrastructures i.e., pavement, concrete, 
bridges, and so on. Overall, the proposed ViT-based stone 
floor tiles crack detection method will enable Pavement 
inspection departments to automatically inspect the civil 
structure frequently. In the future, we are planning to add 
more data to the dataset to improve the accuracy of the 
proposed method. 

References 
[1] B. A. Graybeal, B. M. Phares, D. D. Rolander, M.

Moore, and G. Washer, “Visual Inspection of
Highway Bridges,” Journal of Nondestructive
Evaluation, vol. 21, no. 3, pp. 67–83, Sep. 2002,
doi: 10.1023/A:1022508121821.

[2] B. M. Phares, G. A. Washer, D. D. Rolander, B. A.
Graybeal, and M. Moore, “Routine Highway
Bridge Inspection Condition Documentation
Accuracy and Reliability,” Journal of Bridge

Engineering, vol. 9, no. 4, pp. 403–413, Jul. 2004, 
doi: 10.1061/(ASCE)1084-0702(2004)9:4(403). 

[3] “Minneapolis Interstate 35W Bridge Collapse -
Minnesota Issues Resources Guides.”
https://www.lrl.mn.gov/guides/guides?issue=brid
ges (accessed Apr. 04, 2022).

[4] T. Asakura and Y. Kojima, “Tunnel maintenance
in Japan,” Tunnelling and Underground Space
Technology, vol. 18, no. 2, pp. 161–169, Apr. 2003,
doi: 10.1016/S0886-7798(03)00024-5.

[5] I. Abdel-Qader, O. Abudayyeh, and M. E. Kelly,
“Analysis of Edge-Detection Techniques for Crack
Identification in Bridges,” Journal of Computing
in Civil Engineering, vol. 17, no. 4, pp. 255–263,
Oct. 2003, doi: 10.1061/(ASCE)0887-
3801(2003)17:4(255).

[6] M. Kamaliardakani, L. Sun, and M. K. Ardakani,
“Sealed-Crack Detection Algorithm Using
Heuristic Thresholding Approach,” Journal of
Computing in Civil Engineering, vol. 30, no. 1, p.
04014110, Jan. 2016, doi:
10.1061/(ASCE)CP.1943-5487.0000447.

[7] S. K. Sinha and P. W. Fieguth, “Morphological
segmentation and classification of underground
pipe images,” Machine Vision and Applications,
vol. 17, no. 1, pp. 21–31, Apr. 2006, doi:
10.1007/s00138-005-0012-0.

[8] S. K. Sinha and P. W. Fieguth, “Automated
detection of cracks in buried concrete pipe images,”
Automation in Construction, vol. 15, no. 1, pp. 58–
72, Jan. 2006, doi: 10.1016/j.autcon.2005.02.006.

[9] S. Chambon, P. Subirats, and J. Dumoulin,
“Introduction of a wavelet transform based on 2D
matched filter in a Markov Random Field for fine
structure extraction: Application on road crack
detection,” Proceedings of SPIE - The
International Society for Optical Engineering, vol.
7251, Feb. 2009, doi: 10.1117/12.805437.

[10] Y. Fujita and Y. Hamamoto, “A robust automatic
crack detection method from noisy concrete
surfaces,” Machine Vision and Applications, vol.
22, no. 2, pp. 245–254, Mar. 2011, doi:
10.1007/s00138-009-0244-5.

[11] I. Abdel-Qader, S. Pashaie-Rad, O. Abudayyeh,
and S. Yehia, “PCA-Based algorithm for
unsupervised bridge crack detection,” Advances in
Engineering Software, vol. 37, no. 12, pp. 771–778,
Dec. 2006, doi: 10.1016/j.advengsoft.2006.06.002.

[12] X. Q. Zhu and S. S. Law, “Wavelet-based crack
identification of bridge beam from operational
deflection time history,” International Journal of
Solids and Structures, vol. 43, no. 7, pp. 2299–
2317, Apr. 2006, doi:
10.1016/j.ijsolstr.2005.07.024.



[13] X. Zhou, L. Xu, and J. Wang, “Road crack edge
detection based on wavelet transform,” IOP Conf.
Ser.: Earth Environ. Sci., vol. 237, no. 3, p. 032132,
Feb. 2019, doi: 10.1088/1755-1315/237/3/032132.

[14] L. Ali, F. Alnajjar, N. Zaki, and H. Aljassmi,
“Pavement Crack Detection by Convolutional
AdaBoost Architecture: 8th Zero Energy Mass
Custom Home International Conference, ZEMCH
2021,” ZEMCH 2021 - 8th Zero Energy Mass
Custom Home International Conference,
Proceedings, pp. 383–394, 2021.

[15] L. Ali, S. Harous, N. Zaki, W. Khan, F. Alnajjar,
and H. A. Jassmi, “Performance Evaluation of
different Algorithms for Crack Detection in
Concrete Structures,” in 2021 2nd International
Conference on Computation, Automation and
Knowledge Management (ICCAKM), Jan. 2021,
pp. 53–58. doi:
10.1109/ICCAKM50778.2021.9357717.

[16] K. Chaiyasarn, W. Khan, L. Ali, M. Sharma, D.
Brackenbury, and M. DeJong, “Crack Detection in
Masonry Structures using Convolutional Neural
Networks and Support Vector Machines,” Jul.
2018. doi: 10.22260/ISARC2018/0016.

[17] L. Ali, N. K. Valappil, D. N. A. Kareem, M. J. John,
and H. A. Jassmi, “Pavement Crack Detection and
Localization using Convolutional Neural
Networks (CNNs),” in 2019 International
Conference on Digitization (ICD), Nov. 2019, pp.
217–221. doi: 10.1109/ICD47981.2019.9105786.

[18] L. Ali, F. Sallabi, W. Khan, F. Alnajjar, and H.
Aljassmi, “A deep learning-based multi-model
ensemble method for crack detection in concrete
structures,” ISARC Proceedings, pp. 410–418,
Nov. 2021.

[19] L. Ali, F. Alnajjar, W. Khan, M. A. Serhani, and H.
Al Jassmi, “Bibliometric Analysis and Review of
Deep Learning-Based Crack Detection Literature
Published between 2010 and 2022,” Buildings, vol.
12, no. 4, Art. no. 4, Apr. 2022, doi: 
10.3390/buildings12040432. 

[20] L. Ali, F. Alnajjar, H. A. Jassmi, M. Gocho, W.
Khan, and M. A. Serhani, “Performance
Evaluation of Deep CNN-Based Crack Detection
and Localization Techniques for Concrete
Structures,” Sensors, vol. 21, no. 5, Art. no. 5, Jan.
2021, doi: 10.3390/s21051688.

[21] F.-C. Chen and M. R. Jahanshahi, “NB-CNN:
Deep Learning-Based Crack Detection Using
Convolutional Neural Network and Naïve Bayes
Data Fusion,” IEEE Transactions on Industrial
Electronics, vol. 65, no. 5, pp. 4392–4400, May
2018, doi: 10.1109/TIE.2017.2764844.

[22] E. Asadi Shamsabadi, C. Xu, A. S. Rao, T. Nguyen,
T. Ngo, and D. Dias-da-Costa, “Vision

transformer-based autonomous crack detection on 
asphalt and concrete surfaces,” Automation in 
Construction, vol. 140, p. 104316, Aug. 2022, doi: 
10.1016/j.autcon.2022.104316. 

[23] L. Ali, H. A. Jassmi, W. Khan, and F. Alnajjar,
“Crack45K: Integration of Vision Transformer
with Tubularity Flow Field (TuFF) and Sliding-
Window Approach for Crack-Segmentation in
Pavement Structures,” Buildings, vol. 13, no. 1,
Art. no. 1, Jan. 2023, doi:
10.3390/buildings13010055.

[24] S. Wang, X. Chen, and Q. Dong, “Detection of
Asphalt Pavement Cracks Based on Vision
Transformer Improved YOLO V5,” Journal of
Transportation Engineering, Part B: Pavements,
vol. 149, no. 2, p. 04023004, Jun. 2023, doi:
10.1061/JPEODX.PVENG-1180.

[25] K. Han et al., “A Survey on Vision Transformer,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45,
no. 1, pp. 87–110, Jan. 2023, doi:
10.1109/TPAMI.2022.3152247.

[26] A. Dosovitskiy et al., “An Image is Worth 16x16
Words: Transformers for Image Recognition at
Scale.” arXiv, Jun. 03, 2021. doi:
10.48550/arXiv.2010.11929.

[27] J. Lee, J. Bang, and S.-I. Yang, “Object detection
with sliding window in images including multiple
similar objects,” in 2017 International Conference
on Information and Communication Technology
Convergence (ICTC), Oct. 2017, pp. 803–806. doi:
10.1109/ICTC.2017.8190786.

` 


